An Agent-Based Information System for Electric Vehicle Charging Infrastructure Deployment

Timothy Sweda, Diego Klabjan
Northwestern University

June 7, 2013
Outline

• Background on EVs
• Proposed model
• Implementation
• Results
Electric Vehicles (EVs)

- An electric vehicle (EV) is a vehicle powered entirely or in part by electricity
- A plug-in EV (PEV) can plug into the electrical grid to recharge
Electric Vehicles (EVs)

HEV

PHEV

PEV

BEV
Electric Vehicles (EVs)

• The case for EVs:
 – Lower emissions
 – Lower maintenance costs
 – Lower (and more stable) fuel costs
 – Reduced dependence on foreign oil
 – Symbolism
Electric Vehicles (EVs)

- Barriers to mass PEV adoption:
 - High vehicle prices
 - Gas prices still (relatively) low
 - New technology
 - Uncertainties
 - Limited choices
 - Lack of charging infrastructure
 - Range anxiety
Research Goals

• Facilitate transition of consumer vehicle fleet to PEVs

• Explore relationship between infrastructure presence and PEV adoption

• Develop strategies for deploying new charging stations
Motivation

• “Chicken-and-egg” problem:
 – Consumers will not buy PEVs unless public charging access is readily available
 – Infrastructure providers will not install charging stations unless there are PEV drivers who will use them
Motivation

- Infrastructure providers want to know:
 - Where to locate charging stations
 - Near urban centers
 - Along highways
 - Clustered or dispersed
 - How many charging stations to locate
 - Too few: missed profit opportunities
 - Too many: cannibalized sales
Related Research

• Facility location
 – p-median
 – Set covering
 – Flow intercepting/refueling

• Demand forecasting
 – Discrete choice (logit)
 – Simulation (agent-based)
Related Research

• Shortcomings of previous models:
 – Do not consider interaction between PEV adoption and infrastructure growth
 – Limited study of competition among different EV types
 – For ABMs, patch-based environments prohibit micro-level analyses
Proposed Model

• Contributions:
 – Simulation model that incorporates GIS shapefiles and street-level data
 – Capture charging decisions made by PEV drivers
 – Study effect of charging infrastructure presence on PEV adoption
 – Analyze adoption trends of different EV types
Proposed Model

- Agent-based model (ABM)
- Agents = drivers
 - Income
 - Preferred vehicle class
 - Compact, midsize, luxury, SUV
 - Greenness
 - Vehicle
 - Type (ICE, HEV, PHEV, BEV)
 - Fuel efficiency
 - Period of ownership
Proposed Model

• Environment
 - Roads
 - Houses
 - Workplaces
 - Points of interest
 - Charging stations
Proposed Model

• Each agent has weekly errands
 – Local
 – Distant
 – Work

• Spheres of social influence
 – Neighbors
 – Coworkers
Proposed Model

• PEV drivers must recharge their vehicles periodically
• BEV drivers accumulate inconvenience and worry
 – Inconvenience: extra distance to recharge
 – Worry: distance traveled while battery is low
Proposed Model

• Driving behavior
 – All agents:
 • Must work from 9AM-5PM on weekdays
 • When not at work, may run errands
 • Must obey morning/evening curfews
 – BEV agents:
 • Must seek recharging when battery gets low
 • May recharge at home, charging station, or other destination with charging access
 – PHEV agents:
 • Do not actively seek recharging
 • Recharge only at home and at destinations with charging access
Proposed Model

• Purchasing a new vehicle
 – When vehicle’s age equals length of ownership period, driver replaces vehicle with new one
 – Notation:
 • $y(a, t) = \text{optimal vehicle choice for agent } a \text{ at time } t$
 • $V(a) = \text{set of vehicles available to agent } a$
Proposed Model

- Optimal vehicle expression:

\[y(a,t) = \arg\min_{v \in V(a)} \{ A(v,t) + B(v,a,t) - C(v,a) - D(v,a,t) + E(v,a) + F(v,a,t) + G(v,a) \} \]

- \(A \) : Sticker price
- \(B \) : Expected fuel cost
- \(C \) : Green bonus
- \(D \) : Social influence
- \(E \) : Long distance penalty
- \(F \) : Infrastructure penalty
- \(G \) : Feature tradeoff penalty
Model Implementation

• Modeling platform: Repast
• Environment: Cook, DuPage, Lake, Will counties (IL)
Model Implementation
Model Implementation

• Infrastructure Deployment Scenarios:
 – Base case (18 stations)
 – # stations
 • Base+70
 • Base+200
 – Location weights
 • Population (P)
 • Population^2 (Q)
 • Unweighted (R)
Results

• BEV driver statistics
Results

• BEV driver statistics

![Average Charging Station Usage of BEV Drivers](image)

Recharges Per Year

Scenario

Base, Base+70P, Base+70Q, Base+70R, Base+200P, Base+200Q, Base+200R
Results

- EV adoption
 - adoption vs. time vs. gas price
Ongoing/Future Work

• Develop better model of PEV driving and recharging behaviors
• Calibrate simulations based on new data as it becomes available
• Optimize placement of new charging stations
Thank You