Strategies for Operating a Fleet of Autonomous Vehicles to Provide Passenger Transportation Service

Michael Hyland and Hani Mahmassani
June 9th, 2017
Transport Chicago
Motivation

- Fully-autonomous vehicles (AVs) expected to accelerate existing trends toward shared urban mobility
- AVs eliminate cost and performance limitations associated with human drivers
 - Allow mobility services to compete with personal vehicles in terms:
 - Cost
 - Quality of service (i.e. short wait times)
- Other technological advancements leading toward immediate and reliable communications of instructions to AVs and travelers
- Existing and future shared urban mobility services expected to fill gaps between traditional public transit and personal mobility
- Expect a wide-variety of AV fleet business models
Conceptual Model of AV Fleet Business

• Similar to Ridesourcing companies like Uber and Lyft except cars are **driverless**
 • Also, fleet operator has complete control over each AV in the fleet

• AV Fleet provides **Urban, Passenger** Transportation Service

• AV Fleet competes with individual car ownership, in terms of:
 • Cost
 • Quality of Service

http://www.dailymail.co.uk/news/article-3444495/Omaha-woman-gets-restraining-order-against-Uber-driver.html
AV Fleet Business Models for Mobility Service

Potential Variants

AV Fleet Business Model Decisions

Strategic Decisions

Pricing
- Variance (e.g., Material Cost)
 - Fixed
- Reservation Time-frame
 - Advanced Requests
 - Immediate Requests
- Shared Rides
 - Sharing
 - No Sharing
- Reservation Type
 - Point-to-Point
 - Hourly
- Vehicles
 - Heterogeneous
 - Homogeneous
- Fleet Size Elasticity
 - Variable/Elastic
 - Fixed
- Vehicle Fuel-Type
 - Electric
 - Conventional Gasoline

Tactical Decisions

Vehicle Repositioning

Diverting En-route Vehicles

Request Hold before Assignment
1. **Develop an agent-based simulation tool** to model the movements and behavior of:
 - Travelers
 - AVs
 - AV fleet operator

2. **Develop optimization-based strategies** to efficiently **operate an AV fleet**
 - Assign travelers to AVs
 - Route and schedule AVs to pick-up and drop-off travelers
 - Minimize operational costs
 - Maximize customer quality-of-service (i.e. minimize wait time and in-vehicle travel time)

3. **Implement and test the operational strategies in the agent-based simulation environment**
Dynamic AV Fleet Management Problem Overview

- **3 Possible AV States**
 - Idle
 - En-route to pick-up traveler
 - En-route to drop-off traveler

- **4 Possible Traveler States**
 - Unassigned
 - Assigned
 - In-Vehicle
 - Served
Dynamic AV Fleet Management Problem Overview

• Travelers request rides via a smart-phone
 • Request info: Origin and Destination
 • Assumption: travelers want to be served immediately

• New requests need to be assigned to an AV
 • AVs may currently be idle or busy

• The AV fleet controller needs to decide what AVs to assign to the traveler requests
 • AV fleet operator has complete control over all the AVs
 • In this research, we examine various AV-traveler assignment strategies
AV-Traveler Assignment Strategies

Simplistic Strategies

• **Strategy 1**: Travelers are served first-come, first served (FCFS) by longest idle AV
 • Similar to original taxi-dispatching strategies

• **Strategy 2**: Travelers are served FCFS, but assigned to nearest idle AV
 • This is a slightly less myopic/greedy strategy
AV-Traveler Assignment Strategies

Optimization-based Strategies

• **Strategy 3**: Assign travelers to idle AVs, such that the total wait time across the travelers is minimized

• **Strategy 4**: The same as Strategy 3, except AVs in en-route pick-up state can be reassigned
 - Shown to be highly-beneficial in the context of truckload freight transportation

• **Strategy 5**: The same as Strategy 3, except AVs in en-route drop-off state are included in matching
 - Least myopic/greedy strategy. Takes advantage of knowledge of AVs future locations

• **Strategy 6**: Shared-rides
 - All the previous strategies assigned one traveler to one AV
Simulation Parameters

Fixed

• 2.5 mile x 2.5 mile grid
 • Approximately, the area of Evanston, IL
• 2 hour simulation period
• AV Speed: 20mph
• AV Capacity: 5 persons
• Demand rate: 1500 travelers/hour = 25 travelers per minute
• Traveler origins and destinations: Uniformly distributed
• Pick-up and Drop-off Time: 0 seconds
• Network
 • Manhattan and Euclidean Network ← Not a real road network
 • Deterministic Travel Times ← No congestion and no stochasticity
Simulation Parameters

Variable

- **Fleet Size**: 160 AVs – 230 AVs \(\leftarrow\) Increments of 10
- **Hold time before assigning travelers and AVs**: 1 sec. – 30 sec.
 - A longer hold time allows traveler requests and AVs to form a queue
 - Advantage: Better matching between travelers and AVs
 - Disadvantage: Longer wait time before assigned, and possible longer wait time before being picked up
Simulation Platform and Optimization Solver

- **Python 2.7.8**
 - Objected-oriented programming language

- **Gurobi 7.0.2**
 - Optimization Solver embedded in Python
 - Formulate integer problem in Python and use Gurobi library to call solver
Takeaway 1

Strategy 1 is Very Inefficient

• Reminder of Strategy 1
 • Travelers: First Come, First Served
 • AVs: Longest Idle AV

• Fleet Size of 180 AVs
 • Strategy 1: 350/3,000 (>10%) unserved travelers
 • Strategy 2: 10/3,000 unserved travelers
 • Strategies 3-6: 0 unserved travelers

• Fleet Size of 230 AVs
 • Strategy 1: Average Pickup Time ~= 10 minutes
 • Strategies 2-6: Average Pickup Time ~= 1 minutes
Takeaway 1
Strategy 1 is Very Inefficient

Average Wait Time before Traveler Assigned

- Trav. - FCFS
 - Veh. - Longest Idle
- Trav. - FCFS
 - Veh. - Nearest Idle
- Best Match
 - Idle Vehicles Only
- Best Match
 - Idle and En-route Pickup Vehicles

Strategy 1
Takeaway 2

Optimization-based Strategies outperform FCFS

• Reminder of Strategy 2 ← a FCFS AV assignment strategy
 • Travelers: First Come, First Served
 • AVs: Nearest Idle AV

• Fleet Size of 160 AVs
 • Strategy 2: 200/3,000 (>5%) unserved travelers
 • Strategies 3-6: 0 unserved travelers
 • Strategies 3-6 are optimization-based ← min cost assignment

• Fleet Size of 190 AVs
 • Strategy 2: Average Pickup Time ~= 3-7 minutes
 • Strategies 3-6: Average Pickup Time ~= 1 minutes
Takeaway 2
Optimization-based Strategies outperform FCFS

Average Wait Time Before Traveler Assigned

- Orange line: Trav. - FCFS
- Yellow line: Best Match Idle and En-route Pickup Vehicles
- Gray line: Best Match Idle Vehicles Only
- Blue line: Best Match Idle and En-route Drop-off Vehicles

Strategy 2: FCFS

Optimization-base Assignment Strategies
Takeaway 2
Optimization-based Strategies outperform FCFS

Strategy 2: FCFS

Optimization-base Assignment Strategies
Takeaway 3

Beneficial to include En-route Pick-up AV Diversions

• Strategy 3: Best Traveler – **Idle** AV Assignment
• Strategy 4: Best Traveler – **Idle & En-route Pick-up** AV Assignment
 • AVs that are en-route to pick-up a traveler can be reassigned to another traveler ← beneficial with dynamic requests entering system
Takeaway 3
Beneficial to include En-route Pick-up AV Diversions

Average Wait Time Before Assignment

- Best Match Idle Vehicles Only
- Best Match Idle and En-route Pickup Vehicles

Strategy 4: Diversions
Takeaway 3

Beneficial to include En-route Pick-up AV Diversions

<table>
<thead>
<tr>
<th>Fleet Size</th>
<th>Fleet Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>5,000</td>
</tr>
<tr>
<td>170</td>
<td>5,500</td>
</tr>
<tr>
<td>180</td>
<td>6,000</td>
</tr>
<tr>
<td>190</td>
<td>6,500</td>
</tr>
<tr>
<td>200</td>
<td>7,000</td>
</tr>
</tbody>
</table>

Strategy 4: Diversions
Takeaway 4

Beneficial to include En-route Drop-off AVs in Assignment

• Strategy 3: Best Traveler – **Idle** AV Assignment

• Strategy 4: Best Traveler – **Idle & En-route Pick-up** AV Assignment
 • AVs that are en-route to pick-up a traveler can be reassigned to another traveler ←
 beneficial with dynamic requests entering system

• Strategy 5: Best Traveler – **Idle & En-route Drop-off** AV Assignment
 • If AV currently dropping off a traveler can get to new request fastest, this en-route
 drop-off AV is assigned to traveler request
Takeaway 4
Beneficial to include En-route Drop-off AVs in Assignment

Strategy 5: Include En-route Drop-off AVs in Assignment
Takeaway 4

Beneficial to include En-route Drop-off AVs in Assignment

Strategy 5: Include En-route Drop-off AVs in Assignment
Shared-Rides
Takeaway 5

Shared-Rides **reduce Fleet Miles** and Traveler Wait Time with small increase in Traveler IVTT

<table>
<thead>
<tr>
<th>Fleet Size</th>
<th>Fleet Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>6,200</td>
</tr>
<tr>
<td>170</td>
<td>6,000</td>
</tr>
<tr>
<td>180</td>
<td>5,800</td>
</tr>
<tr>
<td>190</td>
<td>5,600</td>
</tr>
<tr>
<td>200</td>
<td>5,400</td>
</tr>
<tr>
<td>210</td>
<td>5,200</td>
</tr>
<tr>
<td>220</td>
<td>5,000</td>
</tr>
<tr>
<td>230</td>
<td>4,800</td>
</tr>
</tbody>
</table>

Fleet Size

- **Idle and En-route Pickup**
- **Idle and En-route Drop-off**
- **Rideshare**

Strategy 6: Shared-Rides Allowed
Takeaway 5

Shared-Rides **reduce** Fleet Miles and **Traveler Wait Time** with small increase in Traveler IVTT

Strategy 6: Shared-Rides Allowed
Takeaway 5

Shared-Rides reduce Fleet Miles and Traveler Wait Time with *small increase in Traveler IVTT*

Strategy 6: Shared-Rides Allowed
Summary and Conclusion

• Developed **agent-based simulation tool** to model the movements and behavior of:
 • Travelers
 • AVs
 • An AV fleet operator

• **Developed strategies** to efficiently **operate an AV fleet**
 • Optimization-base strategies outperform FCFS rules
 • Including non-idle AVs in assignment improves efficiency
 • Given a fixed fleet size, shared rides improve operational efficiency and customer quality-of-service
Thank you very much!

Michael Hyland
mhyland@u.northwestern.edu
Extra Slides

Mathematical Formulation of AV-Traveler Assignment Problem
Highly-Dynamic, Multi-Vehicle Passenger Pickup and Delivery Problem with Immediate Demand Requests

• Travelers request rides dynamically, and want to be served immediately
 • Request time = Earliest pickup time
 • Operator has no knowledge of demands prior to request time

• A central operator has complete control over an AV fleet

• Central operator assigns AVs to pickup and drop-off traveler requests
 • In this presentation, we examine various optimization-based AV-traveler assignment strategies

• Objective is to minimize combination of operational costs (i.e. AV fleet miles) and traveler quality-of-service (i.e. wait time)
Problem Definition

Taxonomic Classification

<table>
<thead>
<tr>
<th>AVs</th>
<th>Travelers</th>
<th>Information</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-vehicle</td>
<td>Pickup and Drop-off</td>
<td>Dynamic</td>
<td>Manhattan</td>
</tr>
<tr>
<td>Fixed Fleet Size</td>
<td>Immediate Requests</td>
<td>Stochastic</td>
<td>Deterministic Travel Times</td>
</tr>
<tr>
<td>Homogenous</td>
<td>Must be served</td>
<td>Global</td>
<td>No Congestion</td>
</tr>
<tr>
<td>Capacity-constrained</td>
<td></td>
<td>Centralized</td>
<td></td>
</tr>
</tbody>
</table>

- No Congestion
Problem Definition

AV-Traveler Assignment Problem

Sets and Indices

- Let T be the set of known travelers
 - Future travelers will make requests, but these requests are unknown
 - $i \in T$
- Let U be the set of unassigned travelers
 - Traveler State 1
- Let A be the set of assigned travelers
 - Traveler State 2
- Let IV be the set of in-vehicle travelers
 - Traveler State 3
- Let S be the set of served travelers
 - Traveler State 4
- $i \in U \cup A \cup IV \cup S$
- Let V be the set of AVs in the fleet
 - $j \in V$
 - Let I be the set of idle vehicles
 - AV State 1
 - Let P be the set of en-route pick-up vehicles
 - AV State 2
 - Let D be the set of en-route drop-off vehicles
 - AV State 3
 - $j \in I \cup P \cup D$
Problem Definition

AV-Traveler Assignment Problem

Traveler and AV Information

• traveler i:
 • Static Information
 • Pick-up location and drop-off location
 • Request time = earliest pickup time r_i
 • Group Size
 • Dynamic Information
 • Current location
 • Elapsed wait time
 • State $\in U \cup A \cup IV \cup S$

• AV j:
 • Static Information
 • Capacity
 • Dynamic Information
 • Current location
 • Current destination
 • Current load
 • State $\in I \cup P \cup D$
 • Next traveler to pick-up and/or drop-off
Problem Definition

AV-Traveler Assignment Problem

Parameters

- \(c_{ij} \): travel distance between traveler \(i \) and AV \(j \)
 - Also, the remaining wait time of traveler \(i \) if picked-up by AV \(j \)
- \(t_i \): request time of traveler \(i \in U \cup A \) \(\leftarrow \) earliest pickup time
- \(\tau \): current time
- \(w_i = \tau - t_i \): elapsed wait time of traveler \(i \in U \cup A \)
- \(s_{ij} = 1 \) if traveler \(i \in U \) and AV \(j \in P \) are eligible for a shared-ride
- \(r_j = 1 \) if AV \(j \) is currently eligible to be reassigned
- \(h \): length of hold time before assigning AVs to travelers

Decision Variable

- \(x_{ij} = 1 \) if AV \(j \) assigned to traveler \(i \)
Problem Definition

AV-Traveler Assignment Problem

w_i:

t_i: request time of traveler i \leftrightarrow earliest pickup time

τ: current time

$w_i = \tau - t_i$: elapsed wait time of traveler i
Problem Definition
AV-Traveler Assignment Problem

\[w_i \]

\[t_i : \text{request time of traveler } i \leftrightarrow \text{earliest pickup time} \]

\[\tau : \text{current time} \]

\[w_i = \tau - t_i : \text{elapsed wait time of traveler } i \]
Problem Definition

AV-Traveler Assignment Problem

- Unassigned
- Assigned
- In-Vehicle
- Served

\[\tau \]
Problem Definition

AV-Traveler Assignment Problem ↔ Rolling Horizon Optimization

h: length of hold time before assigning AVs to travelers

- Unassigned
- Assigned
- In-Vehicle
- Served
Problem Definition

AV-Traveler Assignment Problem ↔ Rolling Horizon Optimization

- Unassigned
- Assigned
- In-Vehicle
- Served

Assign AVs to Travelers
Problem Definition

AV-Traveler Assignment Problem ↔ Rolling Horizon Optimization

- Unassigned
- Assigned
- In-Vehicle
- Served

Assign AVs to Travelers

This research: test different strategies to assign AVs to Travelers
AV-Traveler Assignment Strategies

Simplistic Strategies

• **Strategy 1**: Travelers are served first-come, first served (FCFS) by longest idle AV
 - Similar to original taxi-dispatching strategies

• **Strategy 2**: Travelers are served FCFS, but assigned to nearest idle AV
 - This is a slightly less myopic/greedy strategy
AV-Traveler Assignment Strategies

Simplistic Strategies

• **Strategy 1**: Travelers are served first-come, first served (FCFS) by longest idle AV
 - Similar to original taxi-dispatching strategies

• **Strategy 2**: Travelers are served FCFS, but assigned to nearest idle AV
 - This is a slightly less myopic/greedy strategy

No mathematical programming required
AV-Traveler Assignment Strategies

Optimization-based Strategies

• **Strategy 3**: Assign travelers to idle AVs, such that the total wait time across the travelers is minimized

• **Strategy 4**: The same as Strategy 3, except AVs in en-route pick-up state can be reassigned
 - Shown to be highly-beneficial in the context of truckload freight transportation

• **Strategy 5**: The same as Strategy 3, except AVs in en-route drop-off state are included in matching
 - Least myopic/greedy strategy. Takes advantage of knowledge of AVs future locations

• **Strategy 6**: Shared-rides
 - All the previous strategies assigned one traveler to one AV
AV-Traveler Assignment Strategies

Optimization-based Strategies

- **Strategy 3**: Assign travelers to idle AVs, such that the total wait time across the travelers is minimized
- **Strategy 4**: The same as Strategy 3, except AVs in en-route pick-up state can be reassigned
 - Shown to be highly-beneficial in the context of truckload freight transportation
- **Strategy 5**: The same as Strategy 3, except AVs in en-route drop-off state are included in matching
 - Least myopic/greedy strategy. Takes advantage of knowledge of AVs future locations
- **Strategy 6**: Shared-rides
 - All the previous strategies assigned one traveler to one AV

Requires mathematical programming
Mathematical Formulation

Static AV-Traveler Assignment Problem

Case 1: \(|T| < |V| \) \# Travelers < \# AVs

\[
\min \left(\sum_{i \in T} \sum_{j \in V} c_{ij} x_{ij} \right)
\]

s.t.

\[
\sum_{j \in V} x_{ij} = 1 \quad \forall i \in T
\]

\[
\sum_{i \in T} x_{ij} \leq 1 \quad \forall j \in V
\]

\[
x_{ij} \in \{0,1\} \quad \forall i \in T, \forall j \in V
\]
Mathematical Formulation

Static AV-Traveler Assignment Problem

Case 1: \(|T| < |V|\)
Travelers < # AVs

\[
\min \left(\sum_{i \in T} \sum_{j \in V} c_{ij} x_{ij} \right)
\]

s.t.

\[
\sum_{j \in V} x_{ij} = 1 \quad \forall i \in T
\]

\[
\sum_{i \in T} x_{ij} \leq 1 \quad \forall j \in V
\]

\[x_{ij} \in \{0, 1\} \quad \forall i \in T, \forall j \in V\]

All travelers must be assigned to an AV

An AV can only be assigned to one traveler

Min. cost AV-traveler matching
Mathematical Formulation

Static AV-Traveler Assignment Problem

Case 2: \(|T| > |V|\) \# Travelers > \# AVs

\[
\begin{align*}
\min & \left(\sum_{i \in T} \sum_{j \in V} c_{ij} x_{ij} - \gamma w_i x_{ij} \right) \\
\text{s.t.} & \\
\sum_{j \in V} x_{ij} & \leq 1 \quad \forall i \in T \\
\sum_{i \in T} x_{ij} & = 1 \quad \forall j \in V \\
x_{ij} & \in \{0, 1\} \quad \forall i \in T, \forall j \in V
\end{align*}
\]
Case 2: $|T| > |V|$
Travelers > # AVs

Min.

\[
\min \left(\sum_{i \in T} \sum_{j \in V} c_{ij} x_{ij} - \gamma w_i x_{ij} \right)
\]

s.t.

\[
\sum_{j \in V} x_{ij} \leq 1 \quad \forall i \in T
\]

\[
\sum_{i \in T} x_{ij} = 1 \quad \forall j \in V
\]

\[
x_{ij} \in \{0,1\} \quad \forall i \in T, \forall j \in V
\]

Static AV-Traveler Assignment Problem

Give preference to travelers that have large elapsed wait time

A traveler can only be assigned to one vehicle

Each AV must be assigned to a traveler

Min. cost AV-traveler matching
Assignment Strategies

What differentiates strategies 3-5?

\[
\min \left(\sum_{i \in T} \sum_{j \in V} c_{ij} x_{ij} - \gamma w_i x_{ij} \right)
\]

What travelers \(i \in T\) are included in the assignment strategy?
- \(i \in U\) \(\leftarrow\) Always
- \(i \in A\) \(\leftarrow\) Sometimes
- \(i \in IV \cup S\) \(\leftarrow\) Never

What AVs are included in the assignment strategy?
- \(j \in I\) \(\leftarrow\) Always
- \(j \in P\) \(\leftarrow\) Sometimes
- \(j \in D\) \(\leftarrow\) Sometimes

- Unassigned travelers \(i \in U\) and idle AVs \(j \in I\) are always included in assignment
- **Strategy 4** includes *en-route pick-up AVs* \(j \in P\) in assignment
 - Essentially allows en-route pick-up AVs to be reassigned (i.e. diverted) to new/other traveler requests
 - This then requires **assigned (but not picked-up) travelers** \(i \in A\) to be included in assignment
- **Strategy 5** includes *en-route drop-off AVs* \(j \in D\) in assignment
 - \(c_{ij}\) \(\leftarrow\) need to account for distance to drop-off current passenger and distance to pick-up new traveler